Effect of Gravity on Colloid Transport through Water-Saturated Columns Packed with Glass Beads: Modeling and Experiments

Constantinos V. Chrysikopoulos*† and Vasiliki I. Syngouna‡

*School of Environmental Engineering, Technical University of Crete, 73100 Chania, Greece
†Environmental Engineering Laboratory, Department of Civil Engineering, University of Patras, 26500 Patras, Greece

ABSTRACT: The role of gravitational force on colloid transport in water-saturated columns packed with glass beads was investigated. Transport experiments were performed with colloids (clays: kaolinite KGa-1b, montmorillonite STx-1b). The packed columns were placed in various orientations (horizontal, vertical, and diagonal) and a steady flow rate of Q = 1.5 mL/min was applied in both up-flow and down-flow modes. All experiments were conducted under electrostatically unfavorable conditions. The experimental data were fitted with a newly developed, analytical, one-dimensional, colloid transport model. The effect of gravity is incorporated in the mathematical model by combining the interstitial velocity (advection) with the settling velocity (gravity effect). The results revealed that flow direction influences colloid transport in porous media. The rate of particle deposition was shown to be greater for up-flow than for down-flow direction, suggesting that gravity was a significant driving force for colloid deposition.

INTRODUCTION

The transport of colloids in porous and fractured media has long been recognized to be of considerable importance to a number of environmental practical applications, including groundwater pollution by microbial pathogens, in situ bioremediation of contaminated aquifers, and granular filtration of water and wastewater. The factors that influence colloid transport in saturated as well as unsaturated porous, and fractured media are quite complex. Numerous investigators have examined theoretically and experimentally the various factors that affect colloid transport in porous and fractured media, especially the effects of interstitial velocity, colloid particle size, collector size, solid matrix porosity, collector roughness, ionic strength, water chemistry, gravitational settling, and presence of suspended clays.

The effect of flow direction on colloid fate and transport in porous media has received relatively minor attention. However, laboratory experiments with bench-scale model aquifers are traditionally conducted with flow direction orthogonal to gravity (horizontal flow), whereas packed column experiments are carried out with flow orthogonal to gravity, against gravity (up-flow), or in the direction of gravity (down-flow). The up-flow direction is widely used because packed columns are traditionally saturated using up-flow to reduce air entrapment. However, numerous of the published studies do not report the flow direction used, and either neglect or regard insignificant the influence of gravitational settling, which is potentially a significant retention mechanism. Experimental data published in the literature are frequently compared to the colloid filtration theory (CFT) without careful consideration of the experimental flow direction. It should be noted that CFT was developed for conditions where the flow is in the direction of gravity.

Very few studies have examined the effect of gravity on colloid sedimentation and transport in fractured and porous media. Wan et al. developed a model to predict colloid sedimentation in porous media and suggested that the sedimentation mechanism can be quite significant for bacteria transport, especially, in studies of long-term downward bacterial transport, and can explain the presence of bacterial populations, which have been observed in deep subsurface environments. Chen et al. examined the role of gravity on the deposition of colloids and bacteria onto glass surfaces of a rectangular parallel plate flow chamber system under electrostatically favorable and unfavorable conditions and concluded that gravity was a significant driving force for particle deposition. James and Chrysikopoulos used a particle tracking technique to simulate the colloid transport in a bifurcating fracture, and shown that dense colloids preferentially exit fractures that are gravitationally down gradient. James and Chrysikopoulos conducted numerical experiments to examine the effects of gravity on dense polydisperse colloid transport in a fracture, and concluded that fracture angle (angle of flow orientation relative to gravity) can significantly impact colloid transport. Ma et al. performed unit model simulations to examine the effect of gravity on colloid retention and concluded that the Happel
sphere-in-cell model is more sensitive to flow orientation relative to gravity than the heterogeneous-in-cell model. It should be noted that the Happel sphere-in-cell model assumes that a solid sphere is surrounded by a fluid-layer with thickness adjusted so that the unit cell porosity is equal to the porous medium porosity, and that the flow is in the direction of gravity, whereas the heterogeneous-in-cell model assumes that the unit cell consists of two solid hemispheres in contact surrounded by a fluid layer of adjustable thickness, and that the flow is in the direction of gravity, perpendicular to the line connecting the two hemisphere centers.

Although there are numerous mathematical models available that describe colloid transport in porous media, in this study, the frequently employed continuum approach was adopted. The phenomenological colloid transport model developed by Sim and Chrysikopoulos\(^{50}\) was extended to account for colloid sedimentation, in order to examine how the flow direction influences colloid fate and transport in porous media. To our knowledge, clay mineral transport in columns packed with glass beads under various flow directions, and electrostatically unfavorable conditions has not been previously explored.

MATHEMATICAL DEVELOPMENT

Transport of Dense Colloids. Based on the continuum approach, the transport of colloids (including biocolloids) in one-dimensional, homogeneous, water saturated porous media with first-order attachment (or filtration) and inactivation, assuming that an effective velocity term accounts for both the interstitial as well as the particle settling velocity is governed by the following partial differential equation:

\[
\frac{\partial C(t, x)}{\partial t} + \frac{\rho_b}{\theta} \frac{\partial C^s(t, x)}{\partial t} = D \frac{\partial^2 C(t, x)}{\partial x^2} - U_{\text{tot}} \frac{\partial C(t, x)}{\partial x} - \lambda C(t, x) - \lambda^s \rho_b C^s(t, x) + \epsilon \frac{\partial^2 C^s(t, x)}{\partial x^2} + \lambda^p \rho_b C^p(t, x)
\]

(1)

where \(C [M/L^3]\) is the concentration of colloids in suspension; \(C^s [M/M]\) is the concentration of colloids attached on the solid matrix; \(\theta\) is the porosity of the porous medium; \(D [L^2/t]\) is the hydrodynamic dispersion coefficient; \(\lambda [1/t]\) is the transformation rate constant of suspended colloids (e.g., inactivation, which refers to loss of infective capability or die-off of suspended biocolloids); \(\lambda^p [1/t]\) is the transformation rate constant of colloids attached on the solid matrix; \(U_{\text{tot}} [L/t]\) is the total (or effective) particle velocity, which for colloids subject to gravitational forces accounts for gravitational settling;

\[U_{\text{tot}} = U + U_{(i)}\]

(2)

where \(U [L/t]\) is the interstitial velocity, and \(U_{(i)} [L/t]\) is a modified version of the traditional “free particle” settling velocity in static water columns\(^{51}\) to “restricted particle” settling in granular porous media under directional flow conditions:

\[U_{(i)} = -f_i \frac{\rho_b - \rho_w}{18 \mu_w} g_{(i)}\]

(3)

where \(f_i [-]\) is the correction factor accounting for particle settling in the presence of the solid matrix of granular porous media, \(\rho_w [M/L^3]\) and \(\rho_b [M/L^3]\) are the densities of the suspending fluid (water) and the colloid particle, respectively; \(\mu_w [M/(L-t)]\) is the dynamic viscosity of water, and \(g_{(i)} [L/T^2]\) is the gravity vector along the direction of the interstitial flow defined as

\[g_{(i)} = g_{(a)} \sin \beta_i\]

(4)

where \(g_{(a)} [M/T^2]\) is the acceleration due to gravity in the negative \(z\)-direction (indicated by the subscript in parentheses), \(\beta_i [\degree]\) is the angle of the main flow direction with respect to the horizontal \(x\)-direction, and \(i\) is the unit vector parallel to the flow (see definition sketch Figure SI1 in the Supporting Information).

For up-flow \(0^\circ < \beta < 90^\circ\), whereas for down-flow \(-90^\circ < \beta < 0^\circ\). Furthermore, it should be noted that for the case of diagonal (or inclined) orientation, although the gravity vector component \(g_{(a)} \sin \beta_i\) is accounted for in the one-dimensional model as gravity effect, the vector component \(g_{(a)} \cos \beta_i\) is not necessarily balanced and can cause colloid deposition or lateral dispersion. The vector component \(g_{(a)} \cos \beta_i\) cannot be considered in the one-dimensional model used in this study.

The correction factor \(f_i [-]\) converts the average free particle sedimentation velocity to the average sedimentation velocity through water saturated porous media:\(^{24}\)

\[f_i = \frac{b + 0.67}{b + 0.93/\varepsilon}\]

(5)

where \(b\) represents the ratio of the average free settling segment length to the grain radius, and \(\varepsilon [-] (0 \leq \varepsilon \leq 1)\) is an empirical correction factor arising from influences of the grain surface. It should be noted that if \(\varepsilon \approx 0.9\) when the grains of the granular porous media contribute only to tortuosity and do not provide additional frictional resistance.\(^{24}\)

It should be noted that the governing colloid transport eq 1 is essentially the colloid transport model provided by Sim and Chrysikopoulos\(^{50}\) with \(U\) replaced by \(U_{\text{tot}}\). Also, eq 3 is the balance among gravity, buoyancy and viscous forces, implicitly assumes that the colloids are small, uniform spheres, and there is a distinct density difference between the colloids and the suspending fluid. The rate of colloid attachment onto the solid matrix is described by the following first-order equation:\(^{52,53}\)

\[\frac{\rho_b \frac{\partial C^s(t, x)}{\partial t}}{\theta} = k(C(t, x) - k_c \frac{\rho_b}{\theta} C^s(t, x)) - \lambda^p \rho_b C^p(t, x)
\]

(6)

where \(k_c [1/t]\) is the attachment rate constant, and \(k_c [1/t]\) is the detachment rate constant.

The initial and boundary conditions employed are

\[C(0, x) = 0\]

(7)

\[-D \frac{\partial C(t, 0)}{\partial x} + U_{\text{tot}} C(t, 0) = \begin{cases} U_{\text{tot}} C_0 & 0 < t \leq t_p \\ 0 & t > t_p \end{cases}\]

(8)

\[\frac{\partial C(t, \infty)}{\partial x} = 0\]

(9)

where \(C_0 [M/L^3]\) is the source concentration of colloids suspended in the aqueous phase, and \(t_p [t]\) is the colloid broad pulse duration. The first condition (7) states that porous medium is initially free of colloids. Condition (8) is a typical
constant flux boundary condition, which implies concentration discontinuity at the inlet of the porous medium. Condition (9) describes that a concentration-continuity is preserved at the downstream boundary of the semi-infinite porous medium. The analytical solution to the partial differential eqs 1 and 6, subject to the initial and boundary conditions (7)–(9), with U instead of U_{tot} has been derived by Sim and Chrysikopoulos, which is given by equation (SI1) in the Supporting Information.

It should be noted that the present colloid transport model is different from traditional models only in the velocity term, U_{tot} which is essentially an effective velocity and accounts for both the interstitial velocity as well as the free particle settling velocity. The various model parameters can be estimated by fitting the analytical solution to the experimental data with the nonlinear least-squares regression package “ColloidFit”, which can be obtained for free from the authors upon request.

Moment Analysis. The tracer and colloid concentrations collected at the column exit were analyzed by the absolute temporal moments:

$$m_n(L) = \int_0^\infty t^n C(L, t) dt$$

(10)

where the subscript $n = 0, 1, 2, ...$ indicates the order of the moment, and L (L) is the porous medium (column) length. Note that the zeroth absolute temporal moment, m_0 [tM/L^3], describes the mass of colloids in the breakthrough curve. The first absolute moment, m_1 [t^2 M/L^3], is the mean residence time. The second absolute temporal moment, m_2 [t^3 M/L^3], describes the spreading of colloids in the breakthrough curve. The normalized temporal moments are given by the following expression:

$$M_n(L) = \frac{m_n(L)}{m_0(L)} = \frac{\int_0^\infty t^n C(L, t) dt}{\int_0^\infty C(L, t) dt}$$

(11)

The first normalized temporal moment, M_1 [t], characterizes the center of mass of the concentration distribution curve and defines the average velocity. The second normalized temporal moment, M_2 [t^2], characterizes the spreading of the concentration distribution curve. Worthy to note is that the ratio $M_2(t)/M_1(t)$ indicates the degree of velocity enhancement of colloid relative to the conservative tracer, where the subscript (c) indicates colloid, and (t) tracer. If this ratio is less than one, there exists colloid retardation, and if it is greater than one there exists velocity enhancement of colloid transport. Furthermore, the mass recovery, M_c [-], of the tracer or the suspended particles is quantified by the following expression:

$$M_c(L) = \frac{m_c(L)}{C_{df_p}}$$

(12)

Model Simulations. To illustrate the effect of gravity on restricted particle settling in porous media, eq 3 was plotted in Figure 1 as a function of the angle of the main flow direction for both down-flow and up-flow directional flow conditions for hypothetical, relatively dense colloid particles, bacteria and viruses. It should be clarified here that the restricted particle settling is affected by particle size but also by particle density. Therefore, as shown in Figure 1, the restricted particle settling of colloids and bacteria is affected by gravity, but the settling of small virus particles is practically unaffected by gravity. As expected, U_{tot} is positive for down-flow conditions and negative for up-flow conditions; whereas, for horizontal flow $U_{tot} = 0$.

![Figure 1. Restricted particle settling velocity as a function of column orientation and flow direction for colloids (clay: $d_p = 2 \mu m$, $\rho_p = 2.65$ g/cm^3), bacteria ($P. putida$: $d_p = 2.2 \mu m$, $\rho_p = 1.45$ g/cm^3), and viruses (bacteriophage MS2: $d_p = 25$ nm, $\rho_p = 1.42$ g/cm^3). Here $f_c = 0.9$.](image)

Consequently, $U_{tot} > U$ for down-flow conditions, $U_{tot} < U$ for up-flow conditions, and $U_{tot} = U$ for horizontal flow. The analytical solution (SI1), presented in the Supporting Information, is used to illustrate the effect of gravity and flow direction on the transport of dense colloid particles in porous media. The model simulations presented in Figure 2 indicate
that flow direction can significantly affect the transport of dense and/or large colloids. Clearly, there is faster breakthrough for down-flow (see Figure 2a), and lower peak colloid concentrations at the column exit for up-flow (see Figure 2b).

EXPERIMENTAL APPROACH

Clay Colloid Selection and Preparation. The clays used in this study were kaolinite (KGa-1b, a well-crystallized kaolin from Washington County, Georgia), and montmorillonite (STx-1b, a Ca-rich montmorillonite, white, from Gonzales County, Texas), purchased from the Clay Minerals Society, Columbia, MO. KGa-1b has a specific surface area of 101.1 m²/g, and a cation exchange capacity of 2.0 mequiv/100 g. STx-1b has a specific surface area of 82.9 m²/g, and a cation exchange capacity of 84.4 mequiv/100 g.

<table>
<thead>
<tr>
<th>parameter</th>
<th>values</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>hydrodynamic diameter, d_h</td>
<td>KGa-1b: 843 ± 126 nm</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>STx-1b: 1187 ± 381 nm</td>
<td>59</td>
</tr>
<tr>
<td>diameter, d</td>
<td>glass beads: 2 mm</td>
<td>31</td>
</tr>
<tr>
<td>zeta potential at pH 7, ζ</td>
<td>KGa-1b: −26.03 ± 2.77 mV</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>STx-1b: −20.5 ± 0.8 mV</td>
<td>59</td>
</tr>
<tr>
<td>isoelectric point, IEP</td>
<td>KGa-1b: pH 2.1</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>STx-1b: nm²</td>
<td>59</td>
</tr>
<tr>
<td>particle density, ρ_p</td>
<td>2.2 g/cm³</td>
<td>56</td>
</tr>
<tr>
<td>BET specific surface area</td>
<td>KGa-1b: 10.1 m²/g</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>STx-1b: 82.9 m²/g</td>
<td>57</td>
</tr>
<tr>
<td>cation exchange capacity</td>
<td>KGa-1b: 2 mequiv/100 g</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>STx-1b: 84.4 mequiv/100 g</td>
<td>56</td>
</tr>
<tr>
<td>morphology/Shape of <2 µm clay</td>
<td>KGa-1b: hexagonal platy particles</td>
<td>59</td>
</tr>
<tr>
<td>fraction</td>
<td>STx-1b: irregular thin flaky particles</td>
<td>59</td>
</tr>
<tr>
<td>chemical composition</td>
<td>KGa-1b: SiO₂ 45.41%, Al₂O₃ 38.79%, TiO₂ 0.28%, Fe₂O₃ 0.21%, MgO 0.01%, Na₂O 0.21%, K₂O 0.2%, STx-1b: SiO₂ 72.92%, Al₂O₃ 15.34%, TiO₂ 0.13%, Fe₂O₃ 0.75%, MnO 0.17%, MgO 3.69%, CaO 1.61%, Na₂O 0.29%, K₂O 0.1%, P₂O₅ 0.05%, S 0.05%</td>
<td>59</td>
</tr>
<tr>
<td>contact angle, β</td>
<td>β_{KGa-1b}: 46.1°</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>β_{STx-1b}: 20.5 ± 2.8°</td>
<td>60</td>
</tr>
</tbody>
</table>
| | $\beta_{glass
| beads}$: 32 ± 5° | 61 |

Table 1. Physical Characteristics and Properties of Glass Beads, KGa-1b and STx-1b

Neutral, which actually ranged between 6.7 and 7. The electrokinetic features (zeta potentials) of the clay colloid suspensions in ddH₂O are unfavorable to deposition (negative zeta potentials, high DLVO energy barriers) at pH > 2.1. Therefore, a potential increase in the effluent pH from 7 to ~9, due to possible mineral release from the glass beads during the column experiments, is not expected to alter the desired (unfavorable to deposition) conditions of this study. It should be noted that the zeta potential of the two clay colloids does not change significantly over the pH range 7–9.

The zeta potential of the clays were measured in triplicates at the experimental conditions (pH 7, $I_c = 0.1$ mM) by a zetasizer (Nano ZS90, Malvern Instruments): −26.03 ± 2.77 mV for KGa-1b, and −20.5 ± 0.8 mV for STx-1b. The zeta potential of glass beads stored in ddH₂O at pH 7 is −54.6 ± 2.4 mV. The isoelectric point (IEP) of KGa-1b in ddH₂O is pH = 2.1. Following the work by Syngoua and Chrysikopoulos, it was determined, based on the conventional DLVO and XDLVO interaction models, using electrokinetic zeta potentials instead of the surface potentials, that for pH 7 and $I_c = 0.1$ mM, repulsive electrostatic forces exist between the two clay colloids (KGa-1b, STx-1b) and the glass beads. A complete list of the physical characteristics and properties of the glass beads, KGa-1b and STx-1b is presented in Table 1.

Column Experiments. Flow through experiments were carried out with KGa-1b and STx-1b clays as model colloids in a 2.5 cm diameter and 30 cm long Chromatex glass column packed with 2 mm in diameter glass beads (Fisher Scientific, New Jersey). Glass beads were chosen as model porous media because they are chemically nonreactive with the solutions used in this study. Prior to the experiments, the beads were cleaned with 0.1 M HCl for 3 h to remove surface impurities (e.g., iron hydroxide and organic coatings) that could promote physicochemical deposition of colloids, rinsed with ddH₂O, then soaked in 0.1 M NaOH for 3 h and rinsed with ddH₂O again. After the cleaning steps, the beads were dried in an oven.
Each column was packed with glass beads under standing ddH₂O to minimize air entrapment. The estimated dry bulk density was 1.61 g/cm³, and the estimated porosity of the various packed columns used in this study was in the range 0.41−0.42. Also, three pore volumes of sterile ddH₂O (pH 7, Iₙ = 0.1 mM) were passed through the column prior to each flow through experiment. The entire packed column as well as all the glassware and materials used for the experiments were sterilized in an autoclave at 121 °C for 20 min. Constant flow of sterile ddH₂O at flow rate of Q = 1.5 mL/min, corresponding to pore water velocity of U = 0.74 cm/min, was maintained through the packed column with a peristaltic pump. For each experiment, three pore volumes of the clay colloid suspension were injected into the packed column, followed by three pore volumes of ddH₂O. Note that the columns were placed horizontally (β = 0°), vertically (β = ± 90°), and inclined (β = ± 45°), as shown in Figure 3. A fresh column was packed for each experiment.

Chloride, in the form of potassium chloride, was chosen as the nonreactive tracer for the transport column experiments. The nonreactive tracer solution was prepared with 0.01 M KCl in ddH₂O. Chloride concentrations were measured using ion chromatography (ICS-1500, Dionex Corp., Sunnyvale, CA). One set of flow through experiments was performed with clay colloid transport in horizontal (β = 0°), a second set in vertical (β = ± 90°), and a third set in inclined (β = ± 45°) columns. For all sets, three pore-volumes of solution were injected into the packed column, followed by three pore volumes of ddH₂O. All experiments were carried out at room temperature (∼25 °C).

Figure 3. Experimental setup showing the various column arrangements: (a) horizontal, (b) diagonal, and (c) vertical.

EXPERIMENTAL RESULTS AND DISCUSSION

The normalized KGa-1b and STx-1b flowthrough experimental data are presented in Figure 4, together with the fitted model predictions. The parameters U_{tot}, D, and k_c were estimated with the nonlinear least-squares regression package “ColloidFit” by fitting the analytical solution Supporting Information eq SI1 to the experimental KGa-1b and STx-1b breakthrough concentrations. Note that in order to keep the number of the fitted parameters equal to three (fitting more than three parameters does not lead to reliable and unique estimates), it was assumed that k_c, λ, and ζ are negligible. The fitted parameters U_{tot}, D, and k_c together with their corresponding 95% confidence intervals are listed in Table 2. Traditionally, packed column dispersion coefficients are determined from tracer behavior; however, in this study, although tracer experiments were conducted and analyzed, the dispersion coefficient for the colloid transport data collected was treated as a fitted parameter, because colloid dispersivities are significantly different than tracer dispersivities. From the fitted U_{tot} values listed in Table 2, the fitted restricted particle settling velocity was easily obtained as $U_{U_{tot}} = U_{tot} - 0.74$ cm/min, because for all experiments of this study U_{tot} was fixed at 0.74 cm/min. Note that $U_{U_{tot}}$ is a function of both colloid size and density.

From Table 2 it is evident that all fitted U_i values followed the theoretical trend suggested by eq 3 ($U_{(i)} = 0$ for horizontal flow, $U_{(i)} > 0$ for down-flow, and $U_{(i)} < 0$ for up-flow). A comparison between the fitted and theoretically determined $U_{(i)}$ values is graphically illustrated in Figure 5. Based on the fitted k_c values listed in Table 2, particle attachment is generally higher for up-flow than down-flow experiments. This observation is in agreement with the results reported by Basha and Culligan who conducted experiments under unfavorable conditions using smooth as well as rough bead packs, and observed that for down-flow experiments, straining
The primary filtration mechanism in the smooth bead packs, whereas, both straining and attachment by surface asperities were important filtration mechanisms in the rough bead packs, but roughness did not affect significantly the filtration process for up-flow experiments. In contrast, Ma et al. found that colloidal deposition rate constants, under conditions favorable to deposition, were slightly higher for down-flow than up-flow experiments.

Only a fraction of the injected clay colloids was recovered at the column effluent, due to clay colloid deposition onto the glass beads. The calculated mass recovery, M_r, values listed in Table 2 suggested that there was more mass retained in the columns under upward than downward flows. With the exception of KGa-1b with VU mode (see exp. no 2 in Table 2), higher mass recoveries were observed for both clays for VD than DD flow directions, and for downward than upward flows. For the same flow conditions, higher retention of KGa-1b than STx-1b was observed (see Table 2), which could be attributed to the higher hydrophobicity of KGa-1b. This observation is in agreement with previous studies. Furthermore, Syngouna and Chryssikopoulos reported that the estimated Lewis acid–base free energy of interaction, $\Phi_{AB(i-b)}$, values are more negative for KGa-1b and glass beads (-42.2 mJ/m2) than STx-1b and glass beads (-1.21 mJ/m2). Therefore, KGa-1b–glass bead interaction is more hydrophobic than STx-1b-glass bead, because the polar Lewis acid–base free energy of interaction is a measure of the hydrophobic attraction between two surfaces. However, it is worthy to note that, despite the highly unfavorable electrostatic conditions of the experiments conducted in this study, significant amount of both clays were retained in the packed columns, suggesting that physical retention was an important filtration mechanism. Clay retention was probably caused by straining and wedging, which are important mechanisms of mass loss in the packed columns when colloid to collector diameter ratios (d_p/d_i) are greater than 0.004 or 0.003. In this study, $d_p/d_i \leq 0.001$, which is comparable to the suggested threshold. Another possible explanation for the observed colloid retention is the planar shape of the clay particles, because colloid shape can influence colloid retention. For example, Seymour et al. reported that collector surface roughness is responsible for the higher retention of non spherical than spherical colloid particles. Note that, both collector surface roughness, and surface charge heterogeneity are known to increase colloid filtration.

The first normalized temporal moment for each breakthrough curve was calculated with eq 11. Also, the ratio of $M_i(c)$ for the two clays (KGa-1b, STx-1b) to $M_i(c)$ for the tracer Cl$^-$ was computed for each flow direction employed (see Table 2). It is worthy to note that, with the exception of exp. no 7, velocity enhancement ($M_i(c)/M_i(t) > 1$) was observed for both of the clay colloids and all of the flow conditions considered in this study. The observed early breakthrough of the two clays, compared to the conservative tracer, is attributed to size exclusion. The relatively large clay particles were excluded from small pores spaces, and sampled the more conductive ranges of the interstitial velocity distribution. Consequently, the clay particles were transported faster than the conservative tracer.

Environmental Implications. A mathematical model describing colloid transport in water saturated porous media, accounting for the gravitational force was presented. The colloid transport model successfully matched the clay particles breakthrough data. The experimental results verified the theoretical prediction that gravity is a significant force for colloid transport in water saturated porous media under conditions unfavorable to deposition, especially for the larger and denser particles. It was shown that particle attachment is generally higher for up-flow than down-flow experiments, and that more mass is retained in porous media under upward than downward flows. Finally, it was shown that colloid particle velocities were enhanced compared to the tracer for most of the cases considered in this study. Although the fitted dispersion coefficients were larger for the clay particles considered in this study than the conservative tracer, chloride, more work is needed to fully describe the relationship between dispersivity and colloid particle size. Future studies should consider the role of gravitational force on colloid transport in saturated as well as unsaturated packed columns under different velocities and ionic strengths (electrostatically favorable conditions).
Table 2. Experimental Conditions, Fitted Parameter Values, and Estimated Mass Recoveries

<table>
<thead>
<tr>
<th>exp. no</th>
<th>(C_m) mg/L (clays) mol/L (tracer)</th>
<th>flow direction(^a)</th>
<th>(U_{so}) (cm/min)</th>
<th>(U_{geo}) (cm/min)</th>
<th>(D) (cm(^2)/min)</th>
<th>(k_b) (1/min)</th>
<th>(M_f) (%)</th>
<th>(M_{geo}) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KGa-1b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>62.8</td>
<td>H</td>
<td>0.73741 ± 0.0018</td>
<td>0.00000</td>
<td>1.0614 ± 0.098</td>
<td>0.0103 ± 0.001</td>
<td>53.5</td>
<td>1.19</td>
</tr>
<tr>
<td>2</td>
<td>50.3</td>
<td>VU</td>
<td>0.73841 ± 0.0008</td>
<td>−0.00159</td>
<td>0.2968 ± 0.036</td>
<td>0.0236 ± 0.001</td>
<td>32.6</td>
<td>1.05</td>
</tr>
<tr>
<td>3</td>
<td>97.6</td>
<td>VD</td>
<td>0.74193 ± 0.0009</td>
<td>0.00193</td>
<td>0.5984 ± 0.026</td>
<td>0.0037 ± 0.001</td>
<td>79.5</td>
<td>1.12</td>
</tr>
<tr>
<td>4</td>
<td>56.6</td>
<td>DU</td>
<td>0.73474 ± 0.0015</td>
<td>−0.00526</td>
<td>0.6790 ± 0.063</td>
<td>0.0233 ± 0.001</td>
<td>37.6</td>
<td>1.07</td>
</tr>
<tr>
<td>5</td>
<td>66</td>
<td>DD</td>
<td>0.74330 ± 0.0016</td>
<td>0.00330</td>
<td>0.6554 ± 0.052</td>
<td>0.0153 ± 0.004</td>
<td>47.9</td>
<td>1.05</td>
</tr>
<tr>
<td>STx-1b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>100.1</td>
<td>H</td>
<td>0.73895 ± 0.0004</td>
<td>0.00000</td>
<td>0.7377 ± 0.052</td>
<td>0.0123 ± 0.001</td>
<td>58.6</td>
<td>1.16</td>
</tr>
<tr>
<td>7</td>
<td>105.9</td>
<td>VU</td>
<td>0.73827 ± 0.0016</td>
<td>−0.00174</td>
<td>0.5521 ± 0.018</td>
<td>0.0164 ± 0.001</td>
<td>65</td>
<td>0.89</td>
</tr>
<tr>
<td>8</td>
<td>102.3</td>
<td>VD</td>
<td>0.74219 ± 0.0013</td>
<td>0.00219</td>
<td>0.5272 ± 0.029</td>
<td>0.0033 ± 0.001</td>
<td>93.8</td>
<td>1.01</td>
</tr>
<tr>
<td>9</td>
<td>75.9</td>
<td>DU</td>
<td>0.73264 ± 0.0023</td>
<td>−0.00736</td>
<td>1.1751 ± 0.094</td>
<td>0.0123 ± 0.001</td>
<td>61.5</td>
<td>1.31</td>
</tr>
<tr>
<td>10</td>
<td>82.5</td>
<td>DD</td>
<td>0.74439 ± 0.0026</td>
<td>0.00438</td>
<td>0.5157 ± 0.072</td>
<td>0.0048 ± 0.000</td>
<td>83.1</td>
<td>1.06</td>
</tr>
</tbody>
</table>

\(^a\)H-horizontal, VU-vertical up-flow, VD-vertical down-flow, DU-diagonal up-flow, DD-diagonal down-flow.

\(^b\)Fitted with ColloidFit. \(^c\)Evaluated with eq. 2. \(^d\)Evaluated with eq 12. \(^e\)Evaluated with eq 11.

Figure 5. Comparison between theoretically estimated (circles), and fitted (squares) \(U_s \) values for: (a) KGa-1b, and (b) STx-1b. Here, \(\rho_{KGa-1b} = \rho_{STx-1b} = 2.2 \) g/cm\(^3\). Here \(U_{s0} < 0 \) for up-flow and \(U_{s0} > 0 \) for down-flow experiments, H-horizontal, VU-vertical up-flow, VD-vertical down-flow, DU-diagonal up-flow, DD-diagonal down-flow.

ASSOCIATED CONTENT

Supporting Information

Classification of modeling approaches, definition sketch, and analytical solution. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
Phone: +30 2821037797; e-mail: cvc@enveng.tuc.gr.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research has been cofinanced by the European Union (European Social Fund–ESF) and Greek National Funds through the Operational program “Education and Lifelong Learning” under the action Aristeia I (Code No. 1185). This work is a collaboration between members of the BioMet Network.

REFERENCES

(14) Yoon, J. K.; Germaine, J. T.; Culligan, P. J. Visualization of particle behavior within a porous medium: Mechanisms for particle

(63) van Oss, C. J.; Good, R. J.; Chaudhury, M. K. The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces. J. Colloid Interface Sci. 1986, 111, 378–390.

